A novel akermanite/poly (lactic-co-glycolic acid) porous composite scaffold fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process

نویسندگان

  • Yao Deng
  • Mengjiao Zhang
  • Xianchun Chen
  • Ximing Pu
  • Xiaoming Liao
  • Zhongbing Huang
  • Guangfu Yin
چکیده

Desirable scaffolds for tissue engineering should be biodegradable carriers to supply suitable microenvironments mimicked the extracellular matrices for desired cellular interactions and to provide supports for the formation of new tissues. In this work, a kind of slightly soluble bioactive ceramic akermanite (AKT) powders were aboratively selected and introduced in the PLGA matrix, a novel l-lactide modified AKT/poly (lactic-co-glycolic acid) (m-AKT/PLGA) composite scaffold was fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process. The effects of m-AKT contents on properties of composite scaffolds and on MC3T3-E1 cellular behaviors in vitro have been primarily investigated. The fabricated scaffolds exhibited three-dimensional porous networks, in which homogenously distributed cavities in size of 300-400 μm were interconnected by some smaller holes in a size of 100-200 μm. Meanwhile, the mechanical structure of scaffolds was reinforced by the introduction of m-AKT. Moreover, alkaline ionic products released by m-AKT could neutralize the acidic degradation products of PLGA, and the apatite-mineralization ability of scaffolds could be largely improved. More valuably, significant promotions on adhesion, proliferation, and differentiation of MC3T3-E1 have been observed, which implied the calcium, magnesium and especially silidous ions released sustainably from composite scaffolds could regulate the behaviors of osteogenesis-related cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method

A porous poly(L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) composite scaffold was fabricated using a novel technique comprising powder mixing, compression molding, low-temperature treatment, and particulate leaching without any organic solvent. The effect of this scaffold on osteoblast proliferation and differentiation was evaluated in vitro. The fabricated scaffold had a homogeneously in...

متن کامل

Poly (lactic-co-glycolic)/nanostructured merwinite porous composites for bone tissue engineering: II. structural and in vitro characterization

Several characteristics of a novel PLGA/Merwinite scaffold were examined in the present study to evaluate the possible applications in bone tissue regeneration. Physical and mechanical properties, as well as degradation behavior and in vitro bioactivity of porous scaffolds produced by solvent casting and particle leaching technique were also characterized. Results showed that incorporation of m...

متن کامل

Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.

Macroporous scaffolds composed of biodegradable polymers have found extensive use as three-dimensional substrates either for in vitro cell seeding followed by transplantation, or as conductive substrates for direct implantation in vivo. Methods abound for creation of macroporous scaffolds for tissue engineering, and common methods typically employ a solid porogen within a three-dimensional poly...

متن کامل

Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure

In this study, a core/shell bi-layered calcium phosphate cement (CPC)-based composite scaffold with adjustable compressive strength, which mimicked the structure of natural cortical/cancellous bone, was fabricated. The dense tubular CPC shell was prepared by isostatic pressing CPC powder with a specially designed mould. A porous CPC core with unidirectional lamellar pore structure was fabricate...

متن کامل

Solid-state cryomilling for porogen mixing and porous scaffold fabrication - biomed 2011.

Several widely used techniques for the fabrication of three dimensional (3D) scaffolds utilize the particulate leaching method to achieve a porous structure. This method involves the selective leaching of a mineral or an organic compound to generate pores. However, scaffolds prepared by this technique tend to exhibit limited interconnectivity. Therefore, to enhance the interconnectivity of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017